Charge
Charge
Charge

- Trickle Current Charge (Overnight Charge)
- Constant Current Charge
- Constant-Current Constant-Voltage Charge
- Multi-Segment Current Charge
- Variable Current Charge
- Fuzzy Controlled Charger
- Grey-Predicted battery charger
- Phase-Locked Battery Charger
- Resistance-Compensated PLL-Based Battery Charger
- Frequency-varied Battery Pulse Charger
- Duty-Varied Battery Pulse Charger
- PLL Battery Pulse Charger
- Reflex with the Energy Recovery Function
Constant-Current and Constant-Voltage Charge
Constant-Current and Constant-Voltage Charge

- **Advantages**
 - Really reduce charge time at constant current charge state
 - Really avoid overcharge at constant voltage
 - Safe & fast

- **Imperfections**
 - 100% full charged is difficult to be obtained in short/middle time
Multi-Segment Current Charge

Advantages
- Really reduce charge time
- Fast

Imperfections
- Complex
- How to determine suitable charge currents for different SOCs
Multi-Segment Current Charge
Variable Current Charge

- Advantages
 - Really reduce charge time
 - fast

- Imperfections
 - Complex
 - How to determine suitable charge currents for different SOCs
Grey-Predicted battery charger

\[I_c(t) = f(v_o(t), v_o(t+T)) \]

\[v_o(t+T) \]

\[v_o(t-3T) \]

\[v_o(t-2T) \]

\[v_o(t-T) \]

\[v_o(t) \]

Demultiplexer

GM(1,1) Model
Look Up Table
(EPROM)

\[\mu \text{ EM78447B} \]

Timer

DAC
(DAC0800)

Variable Current Generator

Controllable Current Source

\[T \]

DAC
(ADC0804)

Battery

\[v_o(t) \]

\[I_c(t) \]
PLL-based Battery Charger

\[X_i \xrightarrow{\text{Phase/Frequency Comparator}} X_e \xrightarrow{\text{LPF}} V_P \xrightarrow{\text{VCO}} X_o \]
PLL-based Battery Charger

Diagram showing the components of a PLL-based battery charger:
- Phase Comparator
- Current Pump
- Lithium-ion Battery
- Difference Amplifier
- Low Pass Filter
- VCO

Input: f_i
Output: f_o
Phase Comparator: P_e
Current Pump: I_c
Lithium-ion Battery
Difference Amplifier
VCO: V_o
Phase Locked: Yes

Float Charge

Phase Tracking State

Frequency-Tracking State

Variable Current Charge Process

Bulk Current Charge Process

Frequency-Locked

Phase-Locked State

Phase Locked: No
PLL-based Battery Charger

Input Frequency
Comparator IN

P/F
Comparator

Comparator OUT

Current Pump

10V

Li-ion Battery

VCO OUT

VCO

Current Pump

Difference Amplifier

V_o

V_h

V_o

V_h
PLL-based Battery Charger

![Graph 1](image1.png)

- Voltage (V) vs. Time (min)
- Voltage rises sharply in the initial 50 minutes, then stabilizes.

![Graph 2](image2.png)

- Current (A) vs. Time (min)
- Current decreases gradually over time, approaching a steady state.

14
PLL-based Battery Charger
Resistance-Compensated PLL-Based Battery Charger

- A Li-ion Battery Pack System includes
 1. Li-ion Cell(s)
 2. Thermistor
 3. Charge-Protection Circuits (PCB, FET, Fuse, …)
 4. Optional Capacity Monitor
Resistance-Compensated PLL-Based Battery Charger
Resistance-Compensated PLL-Based Battery Charger
Resistance-Compensated PLL-Based Battery Charger
Resistance-Compensated PLL-Based Battery Charger

- The charging times for the proposed RC-PLBC and the typical PLBC are 123 and 150 min, respectively.

- The charging speed of the proposed RC-PLBC has been improved by 18% comparing with that of the typical PLBC.

- The Li-ion cell voltage V_{bo} of the proposed RC-PLBC is always less than 8.4V until battery is fully charged.

- There is some extra voltage in the charging path of the Li-ion battery pack, and in reality the Li-ion cell is not overcharged in the proposed RC-PLBC.
Pulse Charge
Pulse Charge
Pulse Charge

- Advantages
 - Electrochemical characteristics are considered
 - Really reduce charge time

- Imperfections
 - Complex
 - What is the optimal pulse width for Charging
Frequency-Varied Battery Pulse Charge System

\[Z_c \]

\[L_c \quad C_{cl} \quad R_{cl} \quad Z_{cw} \quad R_0 \]

\[C_{cl} \quad R_{al} \quad Z_{sw} \quad L_a \]

\[Z_{battery} \quad + \quad ideal \]

\[battery \quad - \]
Frequency-Varied Battery Pulse Charge System
Frequency-Varied Battery Pulse Charge System
Frequency-Varied Battery Pulse Charge System

![Graph showing voltage over time for different charge systems](image)
Duty-Varied Battery Pulse Charge System

[Diagram of battery charge system with labels: R_0, R_{ct}, C_d, L_d, Z_d, Z_w, and ideal battery.]
Duty-Varied Battery Pulse Charge System

\[\eta = \frac{i_b}{D} \]

Pulse charging factor

\[D_s \]

charge voltage

[Diagram showing pulse charging system with time intervals labeled as \(T_F \), \(T_S \), and \(T_C \)]
Duty-Varied Battery Pulse Charge System

```
HT46R24

A/D converter (HT46R24)

A/D converter (HT46R24)

Controller (HT46R24)

V_{cc} R_s \quad \tilde{v}_b

\text{Voltage Regulator (LM317)}

\tilde{i}_b

\text{Li-ion Battery}

\text{OPA (LM324)}

\text{ACS}

\text{OPA (LM324)}

C1384
```
Duty-Varied Battery Pulse Charge System
Duty-Varied Battery Pulse Charge System

\[\eta = \frac{i_b}{D} \]
Duty-Varied Battery Pulse Charge System

\[\text{Duty} \textunderscore \text{Varied Battery Pulse Charge System} \]
Duty-Varied Battery Pulse Charge System

<table>
<thead>
<tr>
<th>Charge Strategy</th>
<th>Input Charge Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVVPCS</td>
<td>590 mAh</td>
</tr>
<tr>
<td>DFVPCS with D=50%</td>
<td>599 mAh</td>
</tr>
<tr>
<td>CC-CV</td>
<td>611 mAh</td>
</tr>
</tbody>
</table>
PLL Pulse Charger

PFC

Charge Pump

UP ON

UP & DN Off

DN On

P_{i}

P_{o}

$P_{o'}$

$P_{i'}$

I_{cp}

I_{p}

V_{o}

VCO

LPF
PLL Pulse Charger

(a) P_i

(b) P_o

(c) I_c + I_{cp}

(d) I_c - I_{cp}

T_{on} T_{off}
PLL Pulse Charger

PFC

Charge Pump

VCO

Li-ion Battery

V

CA

VA

LPF

P_i

P_o

UP

DN

P_{up}

P_{dn}

P_{up}

P_{dn}

I_{cp}

I_{cp}

V_b

I_c

C_r

V_o
PLL Pulse Charger

Average Charging Current

T_{on} T_{off}

Bulk Current Charging Pulsed Current Charging Pulsed Float Charging

I_c
PLL Pulse Charger

![Voltage vs. Time Graph](image)

- **P_i**
- **$P_{o,1min}$**
- **$I_{c,1min}$**
- **$P_{o,20min}$**
- **$I_{c,20min}$**
- **$P_{o,30min}$**
- **$I_{c,30min}$**
- **$P_{o,40min}$**
- **$I_{c,40min}$**
- **$P_{o,60min}$**
- **$I_{c,60min}$**
- **$P_{o,100min}$**
- **$I_{c,100min}$**
- **$P_{o,150min}$**
- **$I_{c,150min}$**
- **$P_{o,200min}$**
- **$I_{c,200min}$**
- **$P_{o,210min}$**
- **$I_{c,210min}$**

![Current vs. Time Graph](image)

- **Ch1 Freq 29.99HZ**
- **Ch2 Freq 21.64HZ**
- **Ch2 Freq 29.74HZ**
- **Ch2 Freq 29.99HZ**

- **Po,1min**
- **Po,60min**
- **Po,100min**
- **Po,150min**
- **Po,200min**
- **Po,210min**

- **Ic,1min**
- **Ic,20min**
- **Ic,30min**
- **Ic,40min**
- **Ic,50min**
- **Ic,60min**
- **Ic,100min**
- **Ic,150min**
- **Ic,200min**
- **Ic,210min**
PLL Pulse Charger

<table>
<thead>
<tr>
<th></th>
<th>CPBC</th>
<th>PLBC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulsed current charging</td>
<td>Pulsed float charging</td>
</tr>
<tr>
<td>Frequency-tracking state</td>
<td>Bulk current charging</td>
<td>Bulk current charging</td>
</tr>
<tr>
<td>Phase-tracking state</td>
<td></td>
<td>Variable current charging</td>
</tr>
<tr>
<td>Phase-locked state</td>
<td>Pulsed float charging</td>
<td>Float charging</td>
</tr>
<tr>
<td>Charging capacity</td>
<td>678mAh</td>
<td>644mAh</td>
</tr>
<tr>
<td>Discharging capacity (Available capacity)</td>
<td>645mAh</td>
<td>603mAh</td>
</tr>
<tr>
<td>Charging efficiency</td>
<td>95.1%</td>
<td>93.6%</td>
</tr>
</tbody>
</table>
Pulse Charge with a Discharge Period (Reflex)
Pulse Charge with a Discharge Period (Reflex)

- Advantages
 - Electrochemical characteristics are considered
 - Ion diffuse and distribute more evenly
 - Really reduce charge time
 - Increase life cycle

- Imperfections
 - Complex
 - What is the optimal pulse width for Charging
 - What is the optimal discharge pulse width
Pulse Charge with a Discharge Period (Reflex)

Lead-Acid Battery, CC, Positive pole

Reflex, Positive pole
Pulse Charge with a Discharge Period (Reflex)

CC, negative pole

Reflex, negative pole
Reflex with Energy Recovery

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of PPP</td>
<td>0.4s</td>
</tr>
<tr>
<td>Time of NPP</td>
<td>0.02s</td>
</tr>
<tr>
<td>Time of RP</td>
<td>0.06s</td>
</tr>
<tr>
<td>Maximum I_{pp}^*</td>
<td>25A</td>
</tr>
<tr>
<td>Maximum I_{np}^*</td>
<td>-20A</td>
</tr>
</tbody>
</table>
Reflex with Energy Recovery

![Graphs showing current and temperature over time with proposed RBC and typical BC comparisons.]

Current (A) vs. Time (hour)
- Proposed RBC
- Typical BC

Temperature (°C) vs. Time (hour)
- Proposed RBC
- Typical BC

- 7.3°C
- 6.9°C
Reflex with Energy Recovery

![Graph showing the relationship between time in hours and capacity in AH for Proposed RBC and Typical BC. The graph indicates that the Proposed RBC reaches 50.9 AH capacity by 3 hours, while the Typical BC reaches 45.8 AH capacity by 3 hours.](image)
Reflex with Energy Recovery

- The proposed Reflex charging technique can improve

 the charging efficiency about 10%,

 the charging speed about 8.8%, and

 the thermal deterioration effect about 5.5%.
About 1.0 AH energy is recovered by the energy recovery function.