

Contents

15.1 Introduction to Query Optimization

15.2 The Optimization Process: An Overview
15.3 Optimization in System R

15.4 Optimization in INGRES

15.5 Implementing the Join Operators

o o 0O O O

Wei-Pang Yang, Information Management, NDHU 15-2

15.1 Introduction to Query Optimization

15-3

The Problem

= How to choose an efficient strategy for evaluating a given expression (a query).
» Expression (a query):
e.g. select distinct S.SNAME

from S, SP

where S.S# =SP.S# and SP.P#="'p2'
» Evaluate:
 Efficient strateqy:

* First class

e.g. (A join B) where condition-on-B

= (A join (B where condition-on-B)) e.g. SP.P# = 'p2'
- Second class

e.g. from S, SP ==> S join SP §15.5 Implementing the Join Operators

How to implement join operation efficiently?
* “Improvement”

may not be an "optimal" version.

Wei-Pang Yang, Information Management, NDHU

15-4

Query Processing in the DBMS

Query in SQL: %
SELECT CUSTOMER. NAME l

FROM CUSTOMER, INVOICE
WHERE REGION ="'N.Y." AND

AMOUNT > 10000 AND Language Processor
CUTOMER.C#=INVOICE.C#

Internal Form :
b5 S 6" e s Language
SCAN C using region index, create C p mize Procgessor
SCAN | using amount index, create |
SORT C?and I?on C#
JOIN C?and I?on C#
EXTRACT name field $

Calls to Access Method: Operator Processor
OPEN SCAN on C with region index

GET next tuple

Calls to file system: Access Method > Accgss
GET10th to 25th bytes from Method
block #6 of file #5

File System

‘ g

A 4

Wei-Pang Yang, Information Management, NDHU 3 j 15-5
QatabasQ

An Example

Suppose: |S| =100,
|SP| = 10,000, and there are 50 tuples in SP with p# ='p2'?
Results are placed in Main Memory.

Query in SQL.:
SELECT S.*
FROM S,SP

WHERE S.S# = SP.S# AND SP.P# = "p2°
e Methad 1: iteration (Join + Restrict)

Sp
s#| SNAME| STATUS| cITY o] P2 | orv
—
1 {s2 : — 1 |s3
215 | | l 2 |s1
100181 ' ' ' \ 10,000 S2

Cost =100 * 10,000 = 1,000,000 tuple I/O's

15-6

Wei-Pang Yang, Information Management, NDHU

An Exam p I e (cont.)

* Method 2: Restriction

— iteration Join

SP Sp
St P# QTY . P#
| oe restrict Si QTY
1 1 | st P2
2 |S1 P2 |::> 2 S3)
10000{ S2| P2 pH#="p2" oy | 2 P2
S SP'
s# |SNAME|STATUS |CITY s# | p# QTY
1|52 ” > 1|8 P2 :
l 2 S5 l 2 |S3 | P2
100/ S1 50 | S2 P2

Wei-Pang Yang, Information Management, NDHU

cost = 10,000 + 100 * 50 = 15,000 1/O

15-7

An Exam p I e (cont.)

* Method 3: Sort-Merge Join + Restrict
Suppose S, SP are sorted on S#.

Wei-Pang Yang, Information Management, NDHU

100

S#

SNAME

STATUS

CITY

S1
S2

$100

SP

S#

P#

QTY

1
2

10,000

S1
S1

s100| -

cost = 100 + 10,000 = 10,100 1/O

15-8

15.2 The Optimization Process: An Overview

(1) Query => internal form

(2) Internal form => efficient form

(3) Choose candidate low-level procedures

(4) Generate query plans and choose the cheapest one

15-9

Query => Algebra
Step 1: Cast the query into some internal representation

Query: "get names of suppliers who supply part p2"
SQL.: select distinct S.SNAME

from S,SP
where S.5# = SP.S# and SP.P# = 'p2'
Query tree: result
|
project (SNAME)
|
restrict (SP.P# = 'p2")
|
join (S.S# = SP.S#)
7\
S SP
Algebra:

((Sjoin SP) where P#="P2") [SNAME] or 7 (o(S™><SP))
S.S# = SP.S# SNAME 'P2'

Wei-Pang Yang, Information Management, NDHU 15-10

Step 2: Convert to equivalent and efficient form

= Def: Canonical Form
Given a set Q of queries, for q1, g2 belong to Q, gl are equivalent

to g2 (gl= g2) iff they produce the same result, Subset C of Q is

said to be a set of canonical forms for Q iff
vgeQ dl cC > g=c

= Note: Sufficient to study the small set C
= Transformation Rules

Step2
output of stepl ——| trans. |— equivalent and more
Algebra efficient form

Efficient Algebra

Wei-Pang Yang, Information Management, NDHU 15-11

Step 2: Convert to equivalent and efficient form (ont)

e.g.1 [restriction first] C
(A join B) where restriction B 0,

4:=q,

A join (B where restriction_B) ¢

e.g.2 [More general case]
(A join B) where restriction_A and restriction_B

(A where rest_on_A) join (B where rest_on_B)

e.g.3 [Combine restriction]
scan

(Awhere rest_1) where rest_2 ——2 1

A where rest_1 and rest_2

Wei-Pang Yang, Information Management, NDHU 15-12

Step 2: Convert to equivalent and efficient form ont)

e.g.4 [projection] last attribute
(A [attribute_list 1]) [attri_2]

!

A [attri_2]

e.g.5 [restriction first]

(A [attri_1]) where rest 1 ni<n

U n+nl
I

|
(A where rest _1) [attri_1] ||
[|

Wei-Pang Yang, Information Management, NDHU 15-13

Step 2: Convert to equivalent and efficient form (ont)

e.g.6 [Introduce extra restriction]

SP JOIN (P WHERE P.P#="P2"
Sp.p# = p.p#

Q If restriction on join attribute
(SP WHERE SP.P# ="P2') JOIN (P WHERE P.P# ="'P2")

e.g.7 [Semantic transformation]
(SP join P) [S#]

Sp.p# = p.p# sp
If SP.P# is a foreign key matching P# s#|p#QTY]
the primary term P.P# P1 s1
P2 S2
SP[S#] o
P5
Note: a very significant improvement. ’\/

Ref.[17.27] P.571 J. J. King, VLDB81

Wei-Pang Yang, Information Management, NDHU 15-14

Step 3: Choose candidate low-level procedures

= Low-level procedure
* e.g. Join, restriction are low-level operators
* there will be a set of procedures for implementing each operator,
e.g. Join (refp.11-31)
<1> Nested Loop (a brute force)
<2> Index lookup (if one relation is indexed on join attribute)
<3> Hash lookup (if one relation is hashed by join attribute)
<4> Merge (if both relations are indexed on join attribute)

Wei-Pang Yang, Information Management, NDHU 15-15

Step 3: Choose candidate low-level procedures (cont)

SQL
" Data flow Q’

Algebra

)

Canonical Form

e.g.
System catalog Q 7T(0(C>)

existence of indexes
cardinalities of Optimizer
relations
_ step3 : access
— > path selection

Lib |
predefined - Q p.554 > 6

low-level procedures
P 11 choose

Ref. p.11-31 One or more

candidate procedures > 2
for each operator

Q e.g9. 7,0,
2 3 2

Wei-Pang Yang, Information Management, NDHU Stepd 15-16

Step 4: Generate query plans and choose the cheapest

= Query plan
* is built by combing together a set of candidate implementation
procedures

» for any given query

U

many many reasonable plans

Note: may not be a good idea to generate all possible plans.

V

heuristic technique "keep the set within bound”
(reducing the search space)

Wei-Pang Yang, Information Management, NDHU 15-17

Step 4: Generate query plans and choose the cheapest (cont)

" Data flow

output of step 3

2 3 2

Step 4(a) (O (CD<I)

\
query [] |:| - [] >4

plans Q ;

Step 4(b)
choose the cheapest

l

RN

cheapest

X QN
PN

Wei-Pang Yang, Information Management, NDHU 15-18

Step 4: Generate query plans and choose the cheapest (cont)

= Choosing the cheapest
* require a method for assigning a cost to any given plan.
» factor of cost formula:
(1) # of disk 1/0
(2) CPU utilization
(3) size of intermediate results

* a difficult problem [Jarke 84, 17.3. p.564 ACM computing surveys]
[Yao 79, 17.8 TODS]

Wei-Pang Yang, Information Management, NDHU 15-19

15.3 Optimization in System R

15-20

Optimization in System R

= Only minor changes to DB2 and SQL/DS.

= Query in System R (SQL) is a set of "select-from-where" block
= System R optimizer
stepl: choosing block order first
in case of nested => innermost block first
step2: optimizing individual blocks
Note: certain possible query plan will never be considered.
= The statistical information for optimizer

Where: from the system catalog
What: 1. # of tuples on each relation
2. # of pages occupied by each relation.
3. percentage of pages occupied by each relation.
4. # of distinct data values for each index.
5. # of pages occupied by each index.

Note: not updated. every time the database is updated. (overhead??)

Wei-Pang Yang, Information Management, NDHU 15-21

Optimization in System R (o)

Given a query block
case 1. involves just a restriction and/or projection
1. statistical information (in catalog)
2. formulas for size estimates of intermediate results.
3. formulas for cost of low-level operations (next section)

choose a strategy for constructing the query operation.

case 2. involves one or more join operations
e.g. Ajoin B join C join D

!

((Ajoin B) join C) join D
Never: (A join B) join (C join D) Why? See next page

Wei-Pang Yang, Information Management, NDHU 15-22

Optimization in System R (cont)

((Ajoin B) join C) join D
Never: (A join B) join (C join D)
Note:

1. "reducing the search space"
2. heuristics for choosing the sequence of joins are given in [17.34] P573

3. (AjoinB) join C
not necessary to compute entirely b@ pflss
0
I.e. if any tuple has been produced

join C

It may never be necessary to finish relation "Aw B ", why ?

. C has run out ??

Wei-Pang Yang, Information Management, NDHU 15-23

Optimization in System R (cont)

= How to determine the order of join in System R ?
« consider only sequential execution of multiple join.

<e.0.> (A=< B)<C)~D

(A =<B) =< (C™ D) x
STEPL1: Generate all possible sequences

<e.g.> (1) (A< B) < C) D
(2) (A>B) X D)= C
3) (AP C) M B)™D
(4) (A=< C) < D) B
(5) ((A>D) ™= B)»=C
(6) (A< D) C)i B

(7) (B 1< C) ba A D
(8) (B C)xt D) A
(9) ((B > D) < A) =< C
(10) (B D) 4C) A
(11) ((C D) < A) B
(12) ((C =<D) = B) <A

Total # of sequences = (4!)/2=12

Wei-Pang Yang, Information Management, NDHU

15-24

Optimization in System R (o)

STEP 2: Eliminate those sequences that involve Cartesian Product
- if A and B have no attribute names in common, then
A< B=A x B
STEP 3: For the remainder, estimate the cost and choose a cheapest.

Wei-Pang Yang, Information Management, NDHU 15-25

15.4 Optimization in INGRES

15-26

Query Decomposition

= a general idea for processing queries in INGRES.

= basic idea: break a query involving multiple tuple variables down into a
sequence of smaller queries involving one such variable each, using
detachment and tuple substitution.

avoid to build Cartesian Product.
* keep the # of tuple to be scanned to a minimum.

<e.g> "Get names of London suppliers who supply some red part weighing less
than 25 pounds in a quantity greater than 200"

Initial query:

Q0: RETRIEVE (S.SNAME) WHERE S.CITY="London'
AND S.S#=SP.S#
AND SP.QTY > 200
AND SP.P#=P.P#
AND P.COLOR = Red
AND P.WEIGHT <25 Q detach P

Wei-Pang Yang, Information Management, NDHU 15-27

Query Decomposition (ont)

D1: RETRIEVE INTO P' (P.P#) WHERE P.COLOR= 'Red'
AND PWEIGHT < 25

Q1: RETRIVE (S.SNAME) WHERE S.CITY = 'London'
AND S.S#=SP.S# S join SP join P’
AND SP.QTY > 200
AND SP.P#=P'.P#

Q detach SP

D2: RETRIEVE INTO SP' (SP.S#, SP.P#)
WHERE SP.QTY > 200

Q2: RETRIEVE (S.SNAME) WHERE S.CITY = 'London'
AND S.S#=SP'.S#
AND SP'.P#=P'.P#

U detach S

Wei-Pang Yang, Information Management, NDHU 15-28

Query Decomposition (ont)

D3: RETRIEVE INTO S' (S5.5#, S.SNAME)
WHERE S.CITY = 'LONDON'
Q3: RETRIEVE (S'.SNAME) WHERE S'.S# =SP'.S# AND SP'.P# = P'.P#

Q detach P' and SP'

D4: RETRIEVE INTO SP"(SP'.S#)
WHERE SP'.P# =P'.P#
Q4: RETRIEVE (S'.SNAME) WHERE S'.S# = SP".S#

D4: two var. --> tuple substitution
(Suppose D1 evaluate to {P1, P3 }

D5: RETRIEVE INTO SP"(SP'.S#)
WHERE SP'.P# ='P1'
OR SP'.P#="P3°

Q4 : two var. --> tuple substitution
(Suppose D5 evaluate to { S1, S2, S4})

Q5: RETRIEVE (S'.SNAME) WHERE S'.S# ='S1'
OR S'.S# ='S2'
OR S'.S# = 'S4’

Wei-Pang Yang, Information Management, NDHU 15-29

Query Decomposition (ont)

= Decomposition tree for query Qo:

Overall D1, D2, D3: queries involve only one variable => evaluate
It .. . o
rTSU D4, Q4: queries involve tow variable => tuple substitution
- Objectives :
oM@, :
> T « avoid to build Cartesian Product.
D3 D4 (D3) . « keep the # of tuple to be scanned to a minimum.
| p/ &P
S D1 D2
P SP

Wei-Pang Yang, Information Management, NDHU 15-30

15.5 Implementing the Join Operators

0 Method 1: Nested Loop

0 Method 2: Index Lookup
0 Method 3: Hash Lookup
0 Method 4: Merge

15-31

Join Operation

= Suppose R ™ S is required, R.A and S.A are join attributes.

R S
N Al
1 a 1 b
b a
> .
e a
m n

Wei-Pang Yang, Information Management, NDHU 15-32

Method 1: Nested Loop

= Suppose R and S are not sorted on A.

R S
Al o Al ...
— "1 a — 1 - b
b a
m . € : n . a
- O (mn)

- the worst case
- assume that S is neither indexed nor hashed on A

- will usually be improved by constructing index or
hash on S.A dynamically and then proceeding
with an index or hash lookup scan.

Wei-Pang Yang, Information Management, NDHU

15-33

Method 2: Index Lookup

= Suppose S in indexed on A

R S.A_index S
...... Al
A a [~
—1 a ' ‘/ a M 1 b
b ' \l l a
. n '
m € : b] a

Wei-Pang Yang, Information Management, NDHU

15-34

Method 3: Hash Lookup

= Suppose S is hashed on A.

S
R .. SAl
RA 0 , b ______
. . n(a)
e
b 2 aI._
: .
m|l || he) N
: C_/
h(e)=1h(b)=0 e
e: =
h(a) = 2 h(z) = 2 T T
1

-Calculate hash function is faster than search in index.

Wei-Pang Yang, Information Management, NDHU 15-35

Method 4: Merge

= Suppose R and S are both sorted (for indexed) on A.
R

S
A A
— 1 : a ' 1 a
. b : a
: b : b
. C . b
m : Z . n d
R S
_ A """ a 7 A
\ N, A —] al~ b
a b | a
: :
C
b a

— Only index is retrieved for any unmatched tuple.

Wei-Pang Yang, Information Management, NDHU

15-36

end of unit 15

Wei-Pang Yang, Information Management, NDHU 15-37

