
UNIT 15

Query Optimization

15-1

Wei-Pang Yang, Information Management, NDHU

Contents

 15.1 Introduction to Query Optimization

 15.2 The Optimization Process: An Overview

 15.3 Optimization in System R

 15.4 Optimization in INGRES

 15.5 Implementing the Join Operators

15-2

15.1 Introduction to Query Optimization

15-3

Wei-Pang Yang, Information Management, NDHU

The Problem

 How to choose an efficient strategy for evaluating a given expression (a query).

• Expression (a query):

e.g. select distinct S.SNAME

from S, SP

where S.S# =SP.S# and SP.P#= 'p2'

• Evaluate:

• Efficient strategy:

• First class

e.g. (A join B) where condition-on-B

(A join (B where condition-on-B)) e.g. SP.P# = 'p2'

• Second class

e.g. from S, SP ==> S join SP

How to implement join operation efficiently?

• “Improvement"

may not be an "optimal" version.



15-4

§15.5 Implementing the Join Operators

Wei-Pang Yang, Information Management, NDHU

Query Processing in the DBMS

Language Processor

Optimizer

Operator Processor

Access Method

File System

database

Language

Processor

Access

Method

?

Query in SQL:

SELECT CUSTOMER. NAME

FROM CUSTOMER, INVOICE

WHERE REGION = 'N.Y.' AND

AMOUNT > 10000 AND

CUTOMER.C#=INVOICE.C#
Internal Form :

P(σ (S SP)
Operator :

SCAN C using region index, create C

SCAN I using amount index, create I

SORT C?and I?on C#

JOIN C?and I?on C#

EXTRACT name field

Calls to Access Method:

OPEN SCAN on C with region index

GET next tuple

.

.

.Calls to file system:

GET10th to 25th bytes from

block #6 of file #5

15-5

Wei-Pang Yang, Information Management, NDHU

An Example

Suppose: |S| = 100,

|SP| = 10,000, and there are 50 tuples in SP with p# = 'p2'?

Results are placed in Main Memory.

Query in SQL:

SELECT S.*

FROM S,SP

WHERE S.S# = SP.S# AND SP.P# = 'p2‘

 Method 1: iteration (Join + Restrict)

SNAME STATUS CITYS#

S2

S5

.

S1

.

.

.

.

.

.

.

.

.

.

.

.

1

2

.

100

S

S# P# QTY

S3

S1

.

S2

.

.

.

.

.

.

.

.

1

2

.

10,000

SP

Cost = 100 * 10,000 = 1,000,000 tuple I/O's

15-6

Wei-Pang Yang, Information Management, NDHU

An Example (cont.)

• Method 2: Restriction iteration Join

S# P# QTY

S3

S1

.

S2

P4

P2

.

P2

.

.

.

.

1

2

.

10000

SP

S# P# QTY

S1

S3

.

S2

P2

P2

.

P2

.

.

.

.

1

2

.

50

SP'

restrict

p#= 'p2'

SNAME STATUS CITYS#

S2
S5

.

S1

.

.

.

.

.

.

.

.

.

.

.

.

1

2

.

100

S

S# P# QTY

S1

S3

.

S2

P2

P2

.

P2

.

.

.

.

1

2

.

50

SP'

cost = 10,000 + 100 * 50 = 15,000 I/O

15-7

Wei-Pang Yang, Information Management, NDHU

An Example (cont.)

• Method 3: Sort-Merge Join + Restrict

Suppose S, SP are sorted on S#.

S# SNAME STATUS CITY

S1

S2
.
.
.
S100

1

2
.
.
.

100

S

.

.

.

.

.

.

.

.

.

.

.

.

S# P# QTY

S1

S1
.
.
.
S100

1

2
.
.
.

10,000

.

.

.

.

.

.

.

.

SP

cost = 100 + 10,000 = 10,100 I/O

15-8

15.2 The Optimization Process: An Overview

(1) Query => internal form

(2) Internal form => efficient form

(3) Choose candidate low-level procedures

(4) Generate query plans and choose the cheapest one

15-9

Wei-Pang Yang, Information Management, NDHU

Step 1: Cast the query into some internal representation

Query: "get names of suppliers who supply part p2"

SQL: select distinct S.SNAME

from S,SP
where S.S# = SP.S# and SP.P# = 'p2'

Query tree: result

|

project (SNAME)

|

restrict (SP.P# = 'p2')

|

join (S.S# = SP.S#)

S SP

Query => Algebra

'P2'SNAME

((S join SP) where P#= 'P2') [SNAME] or ((S SP)) 
S.S# = SP.S#

Algebra:

15-10

Wei-Pang Yang, Information Management, NDHU

Step 2: Convert to equivalent and efficient form

 Def: Canonical Form

Given a set Q of queries, for q1, q2 belong to Q, q1 are equivalent

to q2 (q1 q2) iff they produce the same result, Subset C of Q is

said to be a set of canonical forms for Q iff

 Note: Sufficient to study the small set C

 Transformation Rules

C Q
     q Q c C q c !



output of step1 trans. equivalent and more

efficient form

Step2

Algebra

Efficient Algebra

15-11

Wei-Pang Yang, Information Management, NDHU

Step 2: Convert to equivalent and efficient form (cont.)

e.g.1 [restriction first]

(A join B) where restriction_B

A join (B where restriction_B)

e.g.2 [More general case]

(A join B) where restriction_A and restriction_B

(A where rest_on_A) join (B where rest_on_B)

e.g.3 [Combine restriction]

(A where rest_1) where rest_2

A where rest_1 and rest_2

C

scan

2 1

q1

q2

q1≡q2

15-12

Wei-Pang Yang, Information Management, NDHU

Step 2: Convert to equivalent and efficient form (cont.)

e.g.4 [projection] last attribute

(A [attribute_list_1]) [attri_2]

A [attri_2]

e.g.5 [restriction first]

(A [attri_1]) where rest_1

(A where rest _1) [attri_1]

n1<n

n+n1

.

.

.

.

15-13

Wei-Pang Yang, Information Management, NDHU

Step 2: Convert to equivalent and efficient form (cont.)

e.g.6 [Introduce extra restriction]

SP JOIN (P WHERE P.P#= 'P2')

(SP WHERE SP.P# = 'P2') JOIN (P WHERE P.P# = 'P2')

e.g.7 [Semantic transformation]

(SP join P) [S#]

SP[S#]

Note: a very significant improvement.

Ref.[17.27] P.571 J. J. King, VLDB81

sp.p# = p.p#

if restriction on join attribute

if SP.P# is a foreign key matching

the primary term P.P#

SPP

P#

P1

P2

P3

P4

P5

S# P# QTY

S1

S2

sp.p# = p.p#

15-14

Wei-Pang Yang, Information Management, NDHU

Step 3: Choose candidate low-level procedures

 Low-level procedure

• e.g. Join, restriction are low-level operators

• there will be a set of procedures for implementing each operator,

e.g. Join (ref p.11-31)

<1> Nested Loop (a brute force)

<2> Index lookup (if one relation is indexed on join attribute)

<3> Hash lookup (if one relation is hashed by join attribute)

<4> Merge (if both relations are indexed on join attribute)

.

.

.

15-15

Wei-Pang Yang, Information Management, NDHU

Step 3: Choose candidate low-level procedures (cont.)

 Data flow

existence of indexes

cardinalities of

relations
.

Optimizer
step3 : access

path selection

predefined

low-level procedures

Ref. p.11-31

Canonical Form

e.g.

One or more

candidate procedures

for each operator

Step4

e.g. , ,

p.554

 

((C I)) System catalog

.

.

.

2 3 2

Lib

SQL

Algebra

6

choose

2

15-16

Wei-Pang Yang, Information Management, NDHU

Step 4: Generate query plans and choose the cheapest

 Query plan

• is built by combing together a set of candidate implementation

procedures

• for any given query

many many reasonable plans

Note: may not be a good idea to generate all possible plans.

heuristic technique "keep the set within bound"
(reducing the search space)

15-17

Wei-Pang Yang, Information Management, NDHU

Step 4: Generate query plans and choose the cheapest (cont.)

 Data flow

Step 4(a)

Step 4(b)

choose the cheapest

cheapest

query

plans

output of step 3

((C I)) 
2 3 2




2
2
1


 1

2
1

...

15-18

Wei-Pang Yang, Information Management, NDHU

Step 4: Generate query plans and choose the cheapest (cont.)

 Choosing the cheapest

• require a method for assigning a cost to any given plan.

• factor of cost formula:

(1) # of disk I/O

(2) CPU utilization

(3) size of intermediate results

• a difficult problem [Jarke 84, 17.3. p.564 ACM computing surveys]

[Yao 79, 17.8 TODS]

.

.

.

15-19

15.3 Optimization in System R

15-20

Wei-Pang Yang, Information Management, NDHU

Optimization in System R

 Only minor changes to DB2 and SQL/DS.

 Query in System R (SQL) is a set of "select-from-where" block

 System R optimizer

step1: choosing block order first

in case of nested => innermost block first

step2: optimizing individual blocks

Note: certain possible query plan will never be considered.

 The statistical information for optimizer

Where: from the system catalog

What: 1. # of tuples on each relation

2. # of pages occupied by each relation.

3. percentage of pages occupied by each relation.

4. # of distinct data values for each index.

5. # of pages occupied by each index.

Note: not updated every time the database is updated. (overhead??)

...

15-21

Wei-Pang Yang, Information Management, NDHU

Optimization in System R (cont.)

Given a query block

case 1. involves just a restriction and/or projection

1. statistical information (in catalog)

2. formulas for size estimates of intermediate results.

3. formulas for cost of low-level operations (next section)

choose a strategy for constructing the query operation.

case 2. involves one or more join operations

e.g. A join B join C join D

((A join B) join C) join D

Never: (A join B) join (C join D) Why? See next page

15-22

Wei-Pang Yang, Information Management, NDHU

Optimization in System R (cont.)

Note:

1. "reducing the search space"

2. heuristics for choosing the sequence of joins are given in [17.34] P.573

3. (A join B) join C

not necessary to compute entirely before join C

i.e. if any tuple has been produced

It may never be necessary to finish relation "A B ", why ?

pass

to

join C

((A join B) join C) join D

Never: (A join B) join (C join D)

∵ C has run out ??

15-23

Wei-Pang Yang, Information Management, NDHU

Optimization in System R (cont.)

 How to determine the order of join in System R ?

• consider only sequential execution of multiple join.

<e.g.> ((A B) C) D

(A B) (C D) ×

STEP1: Generate all possible sequences

<e.g.> (1) ((A B) C) D

(2) ((A B) D) C

(3) ((A C) B) D

(4) ((A C) D) B

(5) ((A D) B) C

(6) ((A D) C) B

(7) ((B C) A) D

(8) ((B C) D) A

(9) ((B D) A) C

(10) ((B D) C) A

(11) ((C D) A) B

(12) ((C D) B) A

Total # of sequences = (4!)/ 2 = 12

15-24

Wei-Pang Yang, Information Management, NDHU

Optimization in System R (cont.)

STEP 2: Eliminate those sequences that involve Cartesian Product

• if A and B have no attribute names in common, then

A B = A x B

STEP 3: For the remainder, estimate the cost and choose a cheapest.

15-25

15.4 Optimization in INGRES

15-26

Wei-Pang Yang, Information Management, NDHU

Query Decomposition
 a general idea for processing queries in INGRES.

 basic idea: break a query involving multiple tuple variables down into a

sequence of smaller queries involving one such variable each, using

detachment and tuple substitution.

• avoid to build Cartesian Product.

• keep the # of tuple to be scanned to a minimum.

<e.g> "Get names of London suppliers who supply some red part weighing less

than 25 pounds in a quantity greater than 200"

Initial query:

Q0: RETRIEVE (S.SNAME) WHERE S.CITY= 'London'
AND S.S# = SP.S#
AND SP.QTY > 200
AND SP.P# = P.P#
AND P.COLOR = Red
AND P.WEIGHT < 2 5 detach P

15-27

Wei-Pang Yang, Information Management, NDHU

Query Decomposition (cont.)

Q1: RETRIVE (S.SNAME) WHERE S.CITY = 'London'

AND S.S# = SP.S#

AND SP.QTY > 200

AND SP.P# = P'.P#

S join SP join P’

D1: RETRIEVE INTO P' (P.P#) WHERE P.COLOR= 'Red'

AND P.WEIGHT < 25

D2: RETRIEVE INTO SP' (SP.S#, SP.P#)

WHERE SP.QTY > 200

Q2: RETRIEVE (S.SNAME) WHERE S.CITY = 'London'

AND S.S#=SP'.S#

AND SP'.P#=P'.P#

detach SP

detach S

15-28

Wei-Pang Yang, Information Management, NDHU

Query Decomposition (cont.)

D3: RETRIEVE INTO S' (S.S#, S.SNAME)

WHERE S.CITY = 'LONDON'

Q3: RETRIEVE (S'.SNAME) WHERE S'.S# =SP'.S# AND SP'.P# = P'.P#

D4: RETRIEVE INTO SP"(SP'.S#)

WHERE SP'.P# =P'.P#

Q4: RETRIEVE (S'.SNAME) WHERE S'.S# = SP".S#

D5: RETRIEVE INTO SP"(SP'.S#)

WHERE SP'.P# = 'P1'

OR SP'.P#= 'P3‘

Q5: RETRIEVE (S'.SNAME) WHERE S'.S# = 'S1'
OR S'.S# = 'S2'
OR S'.S# = 'S4'

detach P' and SP'

D4: two var. --> tuple substitution

(Suppose D1 evaluate to {P1, P3 }

Q4 : two var. --> tuple substitution

(Suppose D5 evaluate to { S1, S2, S4})

15-29

Wei-Pang Yang, Information Management, NDHU

Query Decomposition (cont.)

 Decomposition tree for query Q0:

Overall

result

Q4 (Q5)

D3

S' SP''

D4 (D5)

S D1 D2

P' SP'

P SP

D1, D2, D3: queries involve only one variable => evaluate

D4, Q4: queries involve tow variable => tuple substitution

- Objectives :

• avoid to build Cartesian Product.

• keep the # of tuple to be scanned to a minimum.

15-30

15.5 Implementing the Join Operators

 Method 1: Nested Loop

 Method 2: Index Lookup

 Method 3: Hash Lookup

 Method 4: Merge

15-31

Wei-Pang Yang, Information Management, NDHU

Join Operation

 Suppose R S is required, R.A and S.A are join attributes.

R

A

a

b

.

.

e

.

1

m

.

.

.

.

.

.

.

.

.

.

S

A

b

a

.

.

a

.

1

n

.

.

.

.

.

.

.

.

.

.

15-32

Wei-Pang Yang, Information Management, NDHU

Method 1: Nested Loop

A

a

b
.

.

e

.

1

m

.

.

.

.

.

.

.

.

.

.

A

b

a
.

.

a

.

1

n

.

.

.

.

.

.

.

.

.

.

R S

- O (mn)

- the worst case

- assume that S is neither indexed nor hashed on A

- will usually be improved by constructing index or
hash on S.A dynamically and then proceeding
with an index or hash lookup scan.

 Suppose R and S are not sorted on A.

15-33

Wei-Pang Yang, Information Management, NDHU

Method 2: Index Lookup

 Suppose S in indexed on A

S

A

b

a
.

.

a

.

.

.

.

.

.

.

.

.

.

.

A

a

b
.

.

e

.

1

m

.

.

.

.

.

.

.

.

.

.

R

a

a

b

S.A_index

1

n

.
.

.

.

.
.

.

.

15-34

Wei-Pang Yang, Information Management, NDHU

Method 3: Hash Lookup

 Suppose S is hashed on A.

R.A

a

b

z

.

.

e

. . .

.

.

1

m

.

.

.

.

.

.

.

.

.

.

R

b

S

h(a)

h(e)

h(e) = 1 h(b) = 0

h(a) = 2 h(z) = 2

0

1

2

z

a

.

.

e

a
.

.

.

.

. . . .

. . . .

.

.

.

.

.

.

.

.

. . .

.

. . .

.

.S.A

-Calculate hash function is faster than search in index.

15-35

Wei-Pang Yang, Information Management, NDHU

Method 4: Merge
 Suppose R and S are both sorted (for indexed) on A.

=

A

b

a

z

c

b

.

.

.

.

.

.

.

.

.

.

.

A

b

a

d

b

a

.

.

.

.

.

.

.

.

.

.

.

R S

a

a

b

a

a

A

a

b

b

c

z

.

1

m

.

.

.

.

.

.

.

.

.

.

R

A

a

a

b

b

d

.

.

.

.

.

.

.

.

.

.

.

S

1

n

 Only index is retrieved for any unmatched tuple.

15-36

Wei-Pang Yang, Information Management, NDHU

end of unit 15

15-37

