

Feature of a MOS

I - 2/26

 $CD = 0.18, 0.15, 0.13 \mu m; 90, 65, \dots nm$

Schematic IC Structure

I-3/26

Techniques to Characterize IC Microstructure

影像提供的訊息

影像三要素

Mechanism of Image Contrast

What is the color of polar bear fur ?

I-7/26

Information in an Image

♦ B&W in an OM image

Puzzles Caused by Partial Images

An images showing only partial image of a feature may conduct misunderstanding and wrong conclusions.

I-9/26

Image Quality – Dose

Composition Analysis

For a Sn-Pb alloy, is composition analysis required to identify the dark phase and the bright phase?

I - 11/26

Objects of Composition Analysis

- What kind of elements are included in the sample?
- What is the ratio of constituent elements?
- What is the chemical bonding: (CoSi and CoSi₂)

What are the distributions of specified elements?
Across the interface or boundary
Depth profiles

I - 12/26

Composition Analysis -- Spectroscopes

質譜儀: Such as SIMS,用質荷比鑑定元素種類

能譜儀:用電子或X-射線的能量鑑定元素種類 Electron type: Auger, EELS, ESCA(XPS) X-ray type: EDS, XRF

I - 13/26

Composition Analysis – Factors concerned

Spatial resolution

I - 14/26

- Detection limit: ppm or wt%
- Conductive sample or not

Spectroscope	Source	Signal	Spatial resolution	Energy or mass	Sample conductivity	Detection limit	Features
Auger	electons	electons	15 nm	7 eV	V	0.1 wt%	Signal emerges from $t \le 5$ nm
EDS	electons	X-ray	1 ~ 20 nm	130 eV	V	0.1 wt%	
EELS	electons	electons	1 ~ 3 nm	1 eV	V	0.1 wt%	
ESCA(XPS)	X-ray	electons	5 mm 200um	0.2 eV	Х	0.1 wt%	
SIMS	ions	ions	xy: 150 um; z : < 1nm	500 ~ 10000	V	ppm	High dynamic range ~ 10 ⁷
XRF	X-ray	X-ray	200 um		Х	0.01 wt%	Fast, automation & quantitative

- No signal for a specific element does not absolutely means it does not exist, but
- Below detection limit
- Improper operation condition
 For EDS, E < 0.5 E_{th}
- Energy peak overlap
- The specific phase is blocked

I - 15/26

Crystallography

They are all carbon products

They are all SiO₂ products

I-16/26

Crystallography

Are isomers in the micro and/or sub-micro world so easy to be identified ?

- ◆ How to distinguish glass quartz (SiO₂) ?
- How many kinds of Al_2O_3 , $TiSi_2$, TiO_2 ?

Composition	JCPDS No.	Crystall structure	a/b/c (Å)
Al ₂ O ₃		族繁不及備這	
TiSi	10-225	Orthorhombic	3.62/13.76/3.60
	35-785	Orthorhombic	8.27/8.55/4.8
	21-1236	Orthorhombic	4.531/5.498/4.900
	21-1272	Tetragonal	3.785/ /9.514
TiO ₂	21-1276	Tetragonal	4.593/ / 2.959
	29-1360	Orthorhombic	5.456/9.182/5.143
	33-1381	Hexagonal	9.22/ /5.685

I - 17/26

如何選擇正確的分析儀器

◆影像 ▶解析度:µm、nm、Å ◆成份 ▶精確度:+10%、+5%、+2%、.... ▶ 偵測極限: 1 wt% 、0.01 wt% 、ppm ◆晶相 ▶ 塊材(Bulk) ▶ 薄膜: 100 nm 、 10 nm ▶ 局部:µm 、 nm

Trade off : Higher resolution will cost more and take longer

Something Before Go to a Scope

No ticket! No enter! What is your ticket to MA?

Difficulty in Sample Preparation

Technique	Difficulty in Sample Preparation
TEM	1, 8 ~ 10
SEM	1 ~ 4
AES	$1 \sim 3$ (Don't touch with a metal ??)
ESCA	1 (Don't touch with a metal ??)
SIMS	1
AFM	1
SCM	7 ~ 8

More difficult takes more time and higher cost.

I-20/26

Steps of Material Analysis

- To determine what kind of information required?
- To determine how to analyze the sample (choose tools)
- ♦ To make an adequate sample
- ◆ To set up the instrument parameters in best conditions
- ♦ To run the experiment carefully and record data
- ♦ To analyze data
- To draw a conclusion by knowledge and experience

I-21/26

• To reconfirm the data if necessary

To submit a solution for a problem

Importance of MA in Semiconductor Industry

- Check process proper or not in time.
- Reduce the cycle time of R&D
- Reduce the turn around time of defect analysis

基本原理:用高能電子撞擊待測物,再用適當的 偵測器偵測作用後發出的訊號。

電鏡工作原理: Primary Interactions

- 1) Unscattered
- 2) Low angle elastically scattered
- 3 High angle elastically scattered
- 4 Back scattered
- 5 Outer shell inelastically scattered
- 6 Inner shell inelastically scattered

I - 24/26

電鏡工作原理: 2nd and 3 rd Interactions

Volume of Signal Generated v. s. Probe Size

I-26/26

穿透式電鏡工作原理

Focus Ion Beam

I-28/26

聚焦離子束簡介

- ▶ 有 Single beam (ion beam only) 和 Dual beam (ion beam + electron beam) 二種。
- For SEM SEI images , 1.4 nm resolution can be available .
- ▶ 材料分析儀器中,唯一俱備現場切割能力的儀器。
- 利用適當的切割技術,可以剖析元件的3D結構,是逆向工程最有力的工具之一。
- ▶俱有in-line分析缺陷的能力。
- ▶利用Voltage contrast技術,可做半導體元件電性故障分析中 open類故障的定位與缺陷分析。

I - 29/26

▶ 常被使用來製作深次微米半導體元件的TEM試片。

FIB Configuration and Applications

I-30/26

Scanning Electron Microscopy

I-31/26

掃瞄式電鏡簡介

- The most used electron microscope (EM) in IC industry
- ▶ 有SEI、BEI、mapping 三種成像法。
- ▶最重要的分析工具,操作電壓10~30kV,近年來則走向低 電壓 (=>1kV or less)的趨勢。
- > 供應表面層的形態、微結構、和成份訊息。
- ▶ 橫截面觀察供應薄膜結構整體結構關係、薄膜厚度。
 、和成份訊息。
- ▶自動化量測。
- ▶ 表面下的空孔(BEI) 。 What is the color of voids in a BEI?
 - ≻Interface broadening by
 - -- beam broadening
 - -- chemical etching

==> 當待測物的尺寸小於10 nm時,此效應造成的誤差變的 非常明顯。

How the SEM Produce an Image -(1)

How the SEM Produce an Image -(2)

掃描區域與放大倍率

I-35/26

Image Contrast

Coefficient of BE and SE

I-37/26

Topographic Contrast

Generation of Secondary Electrons

I-39/26

Effect of SEI Detector Position

SEM BEI Image

SG = ZnO grain $sp = Spinel (Sb_2O_3)$ grain Liquid phase: Bi-rich

Atomic number (Z):O = 8Zn = 30Sb = 51Bi = 83

I-41/26

Resolution of SEM Images

? High magnification gives higher resolution

Resolution of normal naked eyes @ 25 mm = 0.1 mm

D x M > 0.1 mm can be resolved

M	D
10KX	10 nm
100KX	1 nm
200KX	0.5 nm

So, we can get a 0.20 nm resolution at 500KX , can we?

I-42/26

Effect of Spot Size on Image - 1

SEM Image vs. Acc. Voltage

I-44/26

Limits of SEM

There is no single instrument or technique that can solve all problems!

• If z-dimension is required $\rightarrow AFM$

♦ If the structure of a very precisely specific site is required → FIB

I-45/26

Transmission Electron Microscopy

I-46/26

TEM Techniques

Information offered by TEM-- Crystallography

SADP : Crystalline vs. Amorphous

I-49/26

Information offered by TEM-- Images

$$\mathbf{C} = f(\mathbf{A}, \mathbf{t}, \mathbf{s})$$

- A: composition A phase consisted of high z elements shows dark contrast.
- t: specimen thickness The thick region shows dark contrast.
- s: diffraction condition

Grains closed to zone axes show darker contrast.

Electron scattering & Absorption

Image Contrast from Atomic Conditions

Image Contrast from Diffraction Conditions

I-53/26

Image Contrast Mechanism

TEM—影像:Defects

I-55/26

HREM Image — Interface (1)

I-56/26

Some Puzzles in TEM Images

Defocus

In focus has the highest resolution but poor contrast.

- Optimum under-focus is usually used in TEM imaging.
- Sample local bending
- ♦ 3D to 2D projection

聚焦值對影像的影像-(1)

(a) underfocus 167 nm;(b) underfocus 74 nm;(c) overfocus 19 nm(d) overfocus 112 nm;(e) overfocus 205 nm.

愈忠興**Jong-Shing Bow** I-58/26

Bend Contours

I-59/26

Artifact in TEM Images

(a)的影像是一個大立方體缺了一角(b)?或是一個小立方體放在 三面板中(C)呢?

Puzzles of 3D Objects to 2D Projections

Artifacts in HRTEM images

Scanning Capacitance Microscopy

I-63/26

AFM簡介

SPM(scanning probe microscope)是一群研究樣品 表面性質(形態、磁性、電性、......等等)的顯微 鏡的總稱, AFM是SPM家族的一員。

AFM則是藉由探針尖端和樣品表面的原子吸力 或斥力的作用,使懸桿彎曲或偏折,進而產生 AFM影像。AFM可在空氣中使用,而且可分析 非導體樣品,因此成為目前最方便,而且使用最 廣泛的SPM。

I-64/26

AFM基本結構

PSPD: position sensitive photodetector

I-65/26

Scanner Motion

I-66/26

AFM : Surface Topograph & Profile

AFM to SCM

Scanning Capacitance Microscope (SCM)

 $\Delta \mathbf{C} = \mathbf{K} \, \Delta \mathbf{q}$

- K = f(k, A, d) is a magnifying factor
 - Increase A \rightarrow reduce rsolution \circ
 - Because SiO₂ is the dielectric layer, so a dense SiO₂ layer has a higher K value

I-69/26

▶ Reduce d → increase K
Tunneling is the limit ∘

假像 (Artifacts)

◆捲積(convolution) ▶ 觀察影像 = 實際輪廓 (R) * 探針(P)

假像 (Artifacts) -- II

假像 (Artifacts) -- III

假像 (Artifacts) -- IV

I-73/26

Energy Dispersive Spectroscopy

I-74/26

特性X-光的產生

I-75/26

EDS 工作原理

Convolution of Signal by Sensitivity

SEM加速電壓vs電子束/試片作用體積

Volume of Signal Generated v. s. Probe Size

I-79/26

SEM EDS Analysis v.s. Acc. Voltage

I - 80/26

Pathological overlaps

Energy resolution of EDS ~ 130 eV (0.13 keV)

- Si $K_{\alpha} = 1.739$ keV, Ta $M_{\alpha} = 1.709$ keV, W $M_{\alpha} = 1.774$ keV
- Ti $L_{\alpha} = 0.452 \text{ keV}$, O $K_{\alpha} = 0.523 \text{ keV}$; $\Delta E = 0.071 \text{ keV}$ Ti $K_{\alpha} = 4.510 \text{ keV}$

Q: In-line SEM/EDS, Vacc = 5 keV, for a defect analysis There is a peak at around 0.5 keV. It is labeled Ti/O by auto index. How to judge it is Ti or O?

I-81/26

SEM EDS Analysis v.s. Acc. Voltage

 ◆For SEM/EDS analysis,要激發某一能量(E_x)的特性X-ray, 電子束的能量(E_o)最好大於等於2E_x,最少也要1.5E_x以上。

 $\begin{array}{l} \blacklozenge \text{Example} \\ \blacktriangleright \text{Vacc} = 5 \text{ kV} \\ \text{Si } K_{\alpha} = 1.739 \text{ keV} \\ \text{Ta } M_{\alpha} = 1.709 \text{ keV}, \ L_{\alpha} = 8.145 \text{ keV}, \ L_{\beta 1} = 9.342 \text{ keV}, \ L_{\beta 2} = 9.650 \text{ keV} \\ \text{W } M_{\alpha} = 1.774 \text{ keV}, \ L_{\alpha} = 8.396 \text{ keV}, \ L_{\beta 1} = 9.671 \text{ keV}, \ L_{\beta 2} = 9.960 \text{ keV} \end{array}$

I - 82/26

Vacc = 20 kV should be used to separate Ta (or W) from Si.

Composition Analysis

What is the particle?Is information in the image really not enough to tell it?What does the EDS spectrum tell?

I-83/26

Limit of EDS/SEM

- Detection limit = 0.1 wt% ;
- ◆Vacc = 5 keV is about the lowest operating volatage ;
- ◆It is still not sensitive enough for a very thin layer (t ≤ 2 nm);
- The vacuum of working chamber is another barrier ;
- ◆AES has to be used for very thin layer analysis ;
- UHV working environment is used

TEM-EDS

特性X-光的偵測可用波長分光儀(WDS)或能量分光儀(EDS)。 和SEM比較,在TEM分析中,產生特性X-光的體積非常小(見下圖)。 加上試片漂浮效應在TEM中比較明顯,所以TEM只用EDS偵測特性 X-光。

Effect of Diffraction Conditions

Information offered by TEM--- Composition

EDS

EELS

EELS-Basic

I - 89/26

EELS - Quantitative Analysis (II)

EELS - Quantitative Analysis (IV)

Energy Selected Imaging

能量過濾影像(Energy Filtered Images)

不銹鋼的能量過濾圖。 a 和 b是未過濾影像, c 和 d 是過濾影像 (ΔE = 4 eV)。

a和c的試片厚度是208 nm, b和d的試片厚度是88 nm, 試片厚度由雙晶寬度求出。

g = <111> •

I-93/26

Energy Selected Image

I-94/26

AES儀器原理

如下圖所示,被高能電子束激發的Auger電子自試片表面 釋出,被電子能量分析器接收和分析,從其特性動能判斷元素 的種類。接於能量分析器後面的電子檢測器則計算通過的電子 數量,推算元素的濃度。

AES能譜中電子種類和其分佈

I-97/26

I-98/26

AES: Composition and Depth Profile

AES: Composition and Depth Profile

二次離子的生成機制(II)

靜態SIMS能譜

I-103/26

縱深分析

SIMS Measurement of N-well and P-well

SIMS在半導體分析的應用

Depth profile of implant dopants

- ▶ 在半導體領域中應用最廣的分析
- ▶ 尤其是B、P、As
- ▶ 測定離子佈植機的機台特性和穩定性
- ◆污染元素分析
- ▶ 高分子物質
- ▶ Al 、 Fe 、 Co 、 Ni
- ◆元素擴散分析
- ♦硼磷矽玻璃
- ▶ 必須利用電子束中和樣品表面電荷累積

I-106/26

Crystallography

They are all carbon products

They are all SiO₂ products

I-107/26

Each crystal has a set of unique crystal planes.

 \mathbf{d}_{hkl}

i.e. a unique set of {*hkl*}, as finger print

Eg.: fcc (hkl) = (111), (002), (022), (004).... bcc (hkl) = (011), (002), (022), (013),

I - 109/26

For x-ray $\lambda = 1.54 \text{ Å}$ (Cu K α)

 $\theta = 17.7^{\circ}$

Phase Identification by XRD (1)

Phase Identification by XRD (2)

$$\theta = 18.5^{\circ}, 36.5^{\circ}, 45.2^{\circ}, 49.3^{\circ}, 59.5^{\circ}$$

 $2dsin\theta = \lambda$

d = 2.427, 1.294, 1.085, 1.016, 0.894 Å

Comparing this set of d-spacing with the XRD database

I-112/26

Phase Identification by XRD (3)

Phase Identification by XRD (4)

Advantages:

- Automatically
- Statistically
- Accurately

Disadvantages:

Poor spatial resolution, several mm in diameter

I-114/26

Need enough samples

Electron Diffraction

I-115/26

Phase Identification by SADP (2)

I-116/26

Phase Identification by SADP

(1) $R_1 : R_2 : R_3 : \dots = 1 : X_2 : X_3 : \dots =$ =>crystal structure

(2) if
$$\lambda L$$
 is known, $d = \frac{\lambda L}{R} => d_1, d_2, d_3, \dots$

(3) For cubic crystals $d_{hkl} = \frac{a_0}{(h^2 + k^2 + l^2)^{1/2}}$

fcc 1:1.155:1.633:1.915:2.000

bcc 1:1.414:1.742:2.000:2.236

I-117/26

HREM and SADP of As-deposited Ti/6H-SiC

I-118/26

Converged Beam Electron Diffraction (CBED)

The fringes in the CBED $(0\ 0\ 0)$ disc become blurred with increasing specimen thickness. An energy filtered CBED will help as an energy filtered image does.

I-119/26

HREM Diffractogram

I-120/26

Fast Fourier Transform (FFT)

Very High spatial resolution ~ 3 nm x 3 nm available
Accurate measurement

I-121/26

Phase Identification by FFT (1)

I-122/26

Phase Identification by FFT (2)

I-123/26